Subset Selection as Search with Probabilistic Estimates
نویسنده
چکیده
Irrelevant features and weakly relevant features may reduce the comprehensibility and accuracy of concepts induced by supervised learning algorithms. We formulate the search for a feature subset as an abstract search problem with probabilistic estimates. Searching a space using an evaluation function that is a random variable requires trading o accuracy of estimates for increased state exploration. We show how recent feature subset selection algorithms in the machine learning literature t into this search problem as simple hill climbing approaches, and conduct a small experiment using a bestrst search technique.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملFeature Subset Selection as Search with Probabilistic Estimates
Irrelevant features and weakly relevant features may reduce the comprehensibility and accuracy of concepts induced by supervised learning algorithms. We formulate the search for a feature subset as an abstract search problem with probabilistic estimates. Searching a space using an evaluation function that is a random variable requires trading off accuracy of estimates for increased state explor...
متن کاملInduction Algorithm Induction Algorithm
Irrelevant features and weakly relevant features may reduce the comprehensibility and accuracy of concepts induced by supervised learning algorithms. We formulate the search for a feature subset as an abstract search problem with probabilistic estimates. Searching a space using an evaluation function that is a random variable requires trading oo accuracy of estimates for increased state explora...
متن کاملHybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015